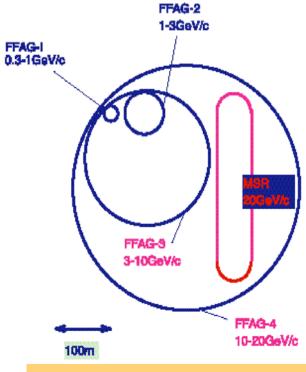


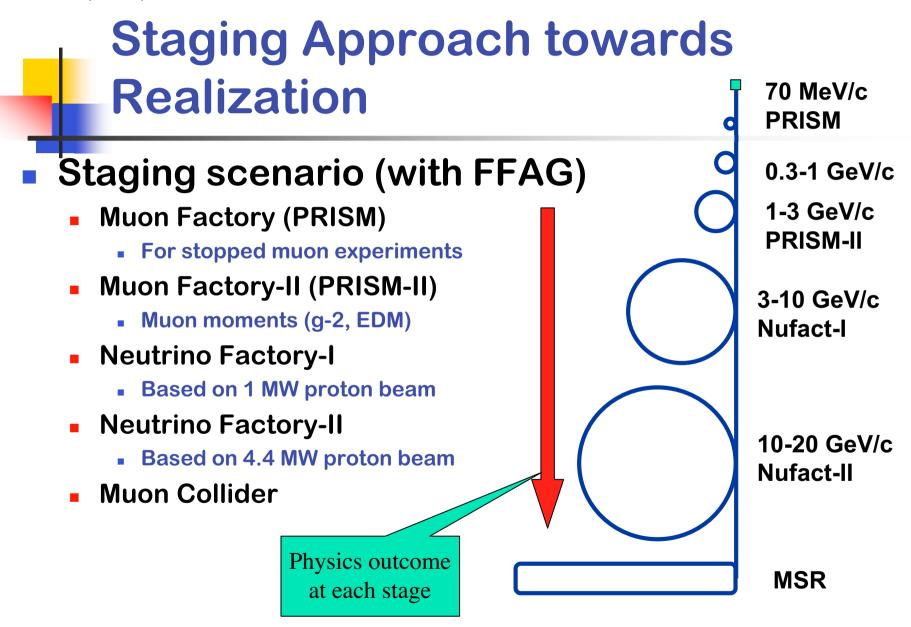
Koji Yoshimura

Institute of Particle and Nuclear Science
High Energy Accelerator Research Organization
(KEK)

- Neutrino Factory in Japan
- R&D activities
- Facility at J-PARC
- Summary

Japanese FFAG Scheme


- FFAG Acceleration (FFAG=Fixed Field Alternating Gradient synchrotron)
 - Large Acceptance (ε_{H,V}, dp/p)
 - Muon cooling is not mandatory. (better if available)
- Advantages
 - Costs saving
 - Small # of low freq RF
 - no cooling needed.
 - Simple and compact (R~200m)
 - Earlier readiness
 - Hardware can be commonly used
 - R&D (POP -> 150 MeV FFAG)


0.5-MeV Proton FFAG POP at KEK

150-MeV Proton FFAG Under construction at KEK

Series of FFAG acceleration

R&D Acitivities

- FFAG
 - 150 MeV Proton FFAG
 - New lattice (non-scaling)*
 - Phase rotator simulation
- Liquid H2 Absorber
 - Convection type for MICE*
 - MUCOOL absorber*
- Scifi tracker
 - MICE detector*
- High field gradient RF
 - Ferrite-loaded cavity
 - Ceramic-loaded cavity*

- Targetry/Collector
 - R&D for high field SC solenoid
 - Prototype magnet of 10.9 T
 - Beam test to measure radiation heat load using 12 GeV proton beam
 - Mercury loop for study of conducting target*

^{*} International collaboration

150 MeV Proton FFAG R&D

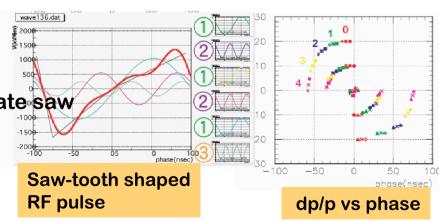
- Parameters
 - 12 sectors
 - Repetition ~ 250Hz
 - 10 MeV to 150 MeV
- Study on
 - Yoke-free magnet
 - Beam extraction
 - Fast repetition rate

KEK PS HALL

Commisioning March 2003

FFAG Phase Rotator for PRISM

- PRISM-FFAG
 - Intense slow muon beam
 - 20 MeV (62 MeV/c)
 - 10¹¹~10¹² μ/s
 - dE/E ~ a few %
 - For stopped muon exp.
 - μ-e conversion


PRISM-FFAG simulation

Kicker Magnet RF Amplifier

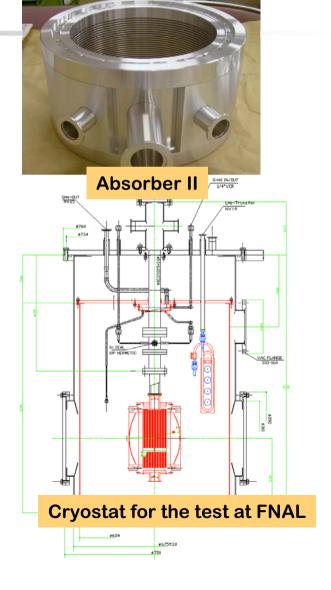
Focus Magnet
Defocus Magnet

Simulation

- 3D tracking
- RF kick
 - Higher harmonics to simulate saw tooth shape
- dE/E ~ 5 %

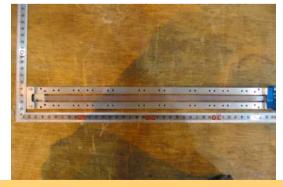
Convection-type L-H₂ absorber

- MICE/MUCOOL collaboration
 - US/EU/Japan (KEK, Osaka)
- KEK bench test of convection absorber I
 - Liquid Ne
 - Heat load Q ~ 70W
 - LHe consumption 29.5 l/hr
 - MICE requirements are met
 - Qtotal ~ 100 W
 - High heat load and high flow rate make solid-Ne
 - Modify flow direction
 - Absorber II


Setup of KEK bench test of convection absorber I

Convection Absorber R&D: Absorber II

2 way flow with heater

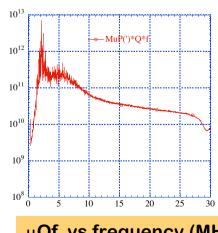

- Test at FNAL
 - Safety issues
 - Window thickness 1m
 - Pmax > 5bar
 - Volume ratio
 - LH₂/Vac ~ 62 > 52
 - Heaters are sheathed
 - Shippment to FNAL
 - Spring, 2003
 - Initial helium filling test at FNAL
 - Summer, 2003

MICE Scifi Tracker R&D

- US/UK/Japan Collaboration
- Beam test using KEK 12 GeV PS in December, 2002
 - Imperial college (Dr. Ed. Mckigney)
 - Kurare \$\phi=0.3mm\$, \$\phi=0.5mm\$, UK fibre \$\phi=1mm\$
 - MA-PMT read out
 - Study light yield and timing resolution

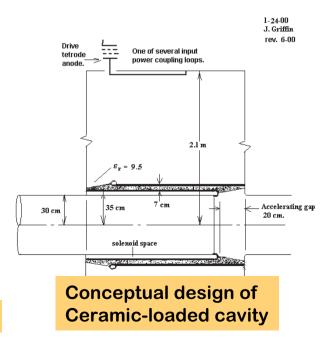
Scifi bundle used in the beam test

Beam test at KEK Dec, 2002


High Gradient RF R&D

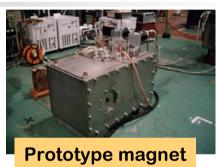
US-Japan collaboration

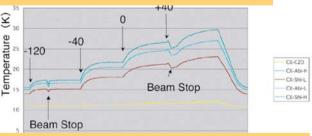
- Ferrite-loaded Japan-KEK
 - SY25(TDK)
 - Large μQf product
 - High shunt impedance
 - To be tested at high power ~ 10 kW



Real size SY25 core

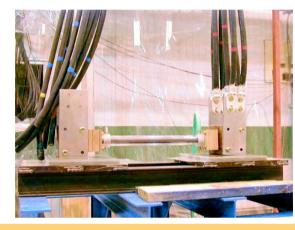
 μ Qf vs frequency (MHz)


- Ceramic-loaded US-FNAL
 - goal: R&D of an RF cavity of 0.5-1.0 MV/m at 7.5 MHz with a high dielectric constant ceramic.

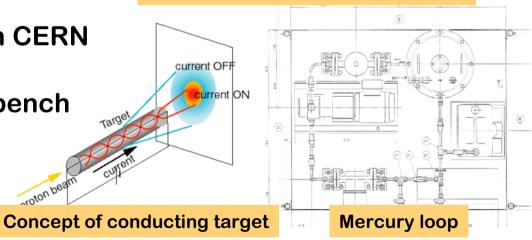

Pion Capture Magnet R&D

- Prototype magnet of 10.9 Tesla
 - Hybrid coil (NbTi, Nb₃Sn, HiTc)
 - Indirect cooling with GM cryocooler
 - 10.9 T in 6 cm warm bore
- Design study
 - Heat load is estimated as ~ 500W with 34cm thick W shield (MARS)
 - Simulation codes (MARS, etc.) should be tested before optimization
 - Beam test at KEK 12 GeVPS in November,2002
 - Direct measurement of radiation heat load from production target, by a coil mockup

Beam test at KEK Nov, 2002

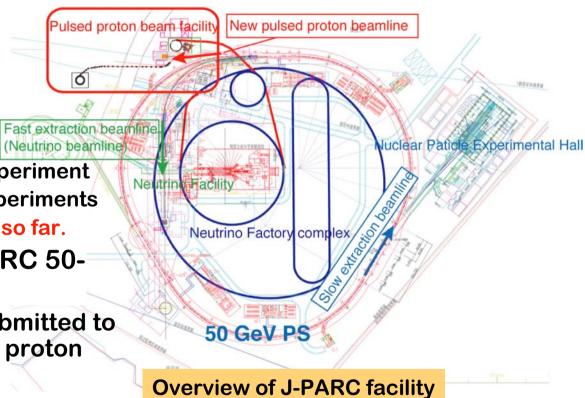


Temperature rise by radiation heat


Target R&D

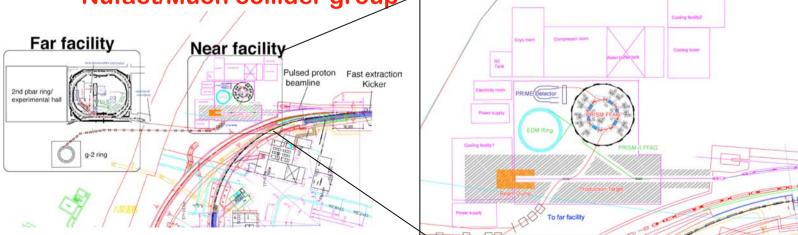
- **Stationary target**
 - JHF neutrino group (Hayato, Oyabu et.al)
 - Water cooled graphite
 - 100 kW
- Conduction pulsed target
 - Collaboration with CERN
 - B. Autin et al
 - Mercury loop for bench test

Test of a water-cooled graphite rod


current OFF

J-PARC Facility

- 50 GeV PS
 - 15µA -> 0.75 MW
 - 3.3x10¹⁴ proton/spill
 - Rep rate 0.3 Hz
 - Two extraction line
 - Fast for Neutrino experiment
 - Slow for Nuclear experiments
 - No pulsed beamline so far.
- Letter of intent to J-PARC 50-GeV PS Programs
 - 6 LOI's have been submitted to request a new pulsed proton beam facility.



Pulsed proton beam facility

- Pulsed proton beam
 - Fast extraction
 - Fast-risetime kicker is needed
 - Bunch operation
 - 9 bunches -> 90 bunches for PRISM
 - PRISM (for muon-electron conversion), PRISM2(for muon-electric dipole moment), muon g-2, antiproton

 A liquid mercury jet target study - LOI was submitted by Nufact/Muon collider group

Summary

- FFAG-based neutrino factory has been proposed and studied.
- J-PARC 50 GeV PS @ Japan
 - Commissioned in 2007
 - A unique MW-class beam
 - A new pulsed proton beam facility is requested:
 - PRISM and PRISM-II (FFAG studies)
 - Suitable for target studies with high intensity proton beam
 - A step toward a neutrino factory
- International R&D
 - Most of R&D works under international collaboration
 - Cooling, FFAG, Target
 - A world-wide collaboration is crucial.
 - We, from Japan, are looking forward to further R&D collaboration with USA and Europe to realize a neutrino factory somewhere in the world!